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Abstract

E�ective conductivity computation is a major component in the study of conduction within a porous medium,
consisting of packed spheres. For packings with porosity lower than 0.47, previous studies typically model the

packed bed as an arrangement of cylinders with connecting webs. Not only does such system deviate from the
actual structure, but its usage also requires empirically determined parameters. An alternative method is herein
presented, and is valid for packed beds of porosity below 0.5, and where the conductivity of the sphere is much

larger than that of the surrounding matrix. The present method approximates the packed bed as packed sphere
systems consisting of di�erent unit cells, and then using the presently computed relations to obtain the e�ective
thermal conductivity. The relations were derived from constriction resistance relations, accounting for the angles

formed between the contacting spheres. The results show for the ®rst time, the necessity of properly accounting for
these contact angles. Accounting for the contact angle, the e�ective thermal conductivity was computed for seven
packed beds with porosities ranging from 0.18 to 0.47. The results were in excellent agreement with previous
experimental and numerical work. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

E�ective conductivity computation is a major com-

ponent in the study of conduction within a porous

medium consisting of packed spheres. Examples of
such medium include sintered-particle systems, and

particle-®lled insulation systems. As shown in Fig. 1(a),

such medium is typically modeled as a simple cubic

structure with interconnecting linkages [1±4]. As this
structure has a minimum porosity, f, limit of 0.4764,

studies requiring a structure with a lower porosity

must typically alter this spherical packing into a regu-

lar arrangement of cylinders with connecting webs [5±
8]. As the resulting structure further deviates from the

actual structure, arti®cial parameters such as the area
and length of the connecting webs are necessarily
determined empirically.

Indeed, the above method has produced accurate
results, but it is also dependent on the availability
of experimental data. Thus, the method becomes
less useful for new packing structures, where the

empirical parameters have not been determined. In
addition, while this method is adequate for conduc-
tion analysis, the unrealistic con®guration would

complicate the coupling with convective and radi-
ative analyses. Finally, a parallel heat ¯ow is often
assumed in computing the e�ective conductivity

[5,9,10]. However, this assumption begins to break
down as the conductivity of the solid and the
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matrix component take on di�erent magnitudes.

That is, the computation may not be accurate if

the conductivity of the solid component is much

higher than that of the matrix component, such as

in a sintering system or for packed beds in a vac-

uum environment.

The objective of this study is to develop another

method that can be more ¯exible in calculating the

e�ective thermal conductivity of such sphere-packing

structures. Using an appropriate packing structure,

such as simple cubic (SC), body-center cubic (BCC)

or face-center cubic (FCC), and approximating the

mean contact area, the e�ective thermal conductivity

is directly computed. Thus, by retaining the sphere-

packing structure shown in Fig. 1(b), this method

can be easily extended to account for simultaneous

convective and radiative e�ects. The present method

relies on computing the proper constriction±resist-

ance relations and the key lies in properly account-

ing for the contact angle between the contacting

spheres. This is shown schematically in Fig. 2.

Thus, this study complements an earlier work [11]
on computing the transient behavior of packed beds
in a 1808 orientation.

In the present study, the resistances for varying con-
tact angles are introduced and using these, the e�ective
conductivity are computed for packed beds with poros-

ity values ranging from 0.2 to about 0.5. The packed
beds are approximated as the SC, BCC and FCC reg-
ular packing structures. These are shown schematically

in Fig. 3. The results show the computed value of the
e�ective conductivity to agree closely with experimen-
tal value and furthermore, the neglect of the above-

mentioned contact angle would introduce a consider-
able error.

2. Analysis

2.1. Packing structure

Packed beds, consisting of a single homogeneous

Nomenclature

k thermal conductivity, W/m K
N number (spheres, contact, etc.)
n number within an unit cell (spheres)

q, Q heat ¯ux (W/m2), heat (W)
r, y, f variables in spherical coordinates
R thermal constriction resistance, K/W

V volume, m3

x ratio of the deformation at a contact to the
sphere radius

Greek symbols
a thermal di�usivity, m2/s
b angle between two contacts, rad

f porosity
g ratio of contact radius to sphere radius,

rc=rs

Subscripts
a, A spheres connected in parallel, and per unit

cross-sectional area
b, c, o bulk, contact and local
e� e�ective

l, L spheres connected in series, and per unit
length

s sphere, or length scale with rs
t thermal path

Fig. 1. Schematic of the structure used by (a) the previous studies and (b) present study.

W.W.M. Siu, S.H.-K. Lee / Int. J. Heat Mass Transfer 43 (2000) 3917±39243918



solid, typically have a porosity less than 0.5. For these,
the packing can be closely approximated as arrange-

ments of uniform-sized spheres. Thus, by using di�er-
ent arrangements, packed beds of di�erent porosities

can be obtained. Consistent with the ®ndings from pre-
vious sintering studies [12,13], the present work utilizes

the SC, the BCC and the FCC arrangements for di�er-
ent ranges of porosity values (Table 1).

These structures are shown schematically in Fig. 3,
and from simple geometrical relations, the porosity for

each of these structures can be computed by Eq. (1).
The only unknown parameters in this equation are g
and x, which are, respectively, the contact radius ratio
and sphere deformation ratios. Assuming the spheres

to undergo elastic deformation, a unique relation exists
between these two ratios [14], which is given in Table 2.
Therefore, the porosity of these three packing struc-

tures can be uniquely determined, or vice versa, given
a target porosity, a structure can be chosen according

to Table 1, and the resulting value of g and x can be

determined; g is a necessary parameter in calculating
ke�.

f � 1ÿ
�
4

3
pr3s ÿNc�rsg� 2rsx

�
ns=V �1�

2.2. E�ective thermal conductivity

Q � keffA
DT
L
�)keff � L

A

Q

DT
�2�

The e�ective thermal conductivity of each unit cell
of the packing structure can be computed from the
Fourier's Law given in Eq. (2), where Q is the total
heat ¯ow resulting from the driving potential of DT:
Invoking the de®nition of the thermal resistance, the
e�ective conductivity can be equivalently expressed by
Eq. (3), where L and A are the length and cross-sec-

tional area of the unit cell, while R is the total resist-
ance imposed by the unit cell.

keff � L

A

1

R
�3�

For a unit cell where the conductivity of the sphere
is much larger than that of the surrounding matrix,
this total resistance is the sum of the resistances within

and between the spheres. Assuming a system under-
going sintering, or under su�ciently high pressure, the

Fig. 2. Schematic showing the formation of the contact angle

between three contacting spheres.

Fig. 3. Schematic of the (a) simple cubic, (b) body-center cubic and (c) face-center cubic unit cells.

Table 1

Suitable packing arrangements for di�erent porosity ranges

Simple cubic (SC),

Nc � 6, ns � 1, V � 8r3s

f: 0.5±0.35

Body-center cubic (BCC),

Nc � 8, ns � 2, V � 64r3s =�3
���
3
p �

f: 0.3±0.25

Face-center cubic (FCC),

Nc � 12, ns � 4, V � 32r3s =�
���
2
p �

f: 0.2 and below
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value of the contact resistance may be neglected. Thus,
the total resistance, R, becomes dependent on the total
thermal path, which is di�erent for various packing

structures.
Shown in Fig. 4 are the schematics of the SC, BCC

and FCC unit cells, subjected to a uni-directional heat
¯ow, Q, from the left to the right. In Fig. 4(a), the

heat passes from the left sphere to the right sphere
through sphere ``C'', and the resulting angle formed
between these three spheres is 1808. Denoting these

three contacting spheres as one thermal path, it is
noted that sphere ``C'' in the SC unit cell contains only
one thermal path of 1808 orientation (Fig. 5(a)). In

contrast, the BCC and FCC unit cells shown in
Fig. 5(b) and (c) contain four parallel thermal paths
through sphere ``C'', with respective orientations of
70.538 and 908. Denoting R(b), as the resistance of one

thermal path with orientation of b, it is clear that for a
SC unit cell, the resistance, Rs, imposed by sphere ``C''
is R(180), and those imposed by sphere ``C'' in the

BCC and FCC unit cells are R(70.53)/4 and R(90)/4,
respectively. In general form, this is given below in Eq.
(4), where for a packing of mono-size spheres, the con-

tact angle, b, can vary from 1808 to 608.

Rs � R�b�
Nt

�4�

For a packed sphere system, every sphere except for
those at the boundary is a sphere ``C''. Thus, Rs given
in Eq. (4) is essentially the resistance of each interior

sphere in the system, and for a packing with large
number of spheres, the total thermal resistance of the
packed bed is given by Eq. (5). In Eq. (5), Na and Nl

are, respectively, the number of spheres connected in
parallel and series.

R � Rs

Nl

Na

�5�

keff � L

A

Na

Nl

Nt

R�b� �
NA

NL

Nt

R�b� �6�

Thus, the e�ective thermal conductivity can be deter-

mined by combining Eqs. (3) and (5), and introducing
the parameters NL and NA, which, respectively, rep-
resent Nl per unit length and Na per unit cross-sec-

tional area. The ®nal expression for the e�ective
thermal conductivity is given above in Eq. (6), and the
values of the parameters are summarized in Table 3.
The only remaining unknown in Eq. (6) is R�b�, which
represents the dependence of the constriction resistance
on the contacting angles. As this is not available in the
literature, it is computed within this study.

2.3. Constriction resistance

The key to obtaining the constriction resistance
(hereafter simply referred to as the resistance) for vary-
ing contact angle is to recognize that it actually con-
sists of two components, and only one of which is

a�ected by the angle. As illustrated by the cylindrical
object in Fig. 6 and expressed in Eq. (7), the resistanceTable 2

Relations between the contact radius and deformation ratios

for spheres under elastic deformations

Contact radius ratio, g Deformation ratio, x

0.1 0.008

0.15 0.015

0.2 0.028

0.25 0.037

0.3 0.05

Table 3

Summary of parameters for di�erent packing structures

NA NL Nt R(b)

Simple cubic, SC 1/(4rs
2) 1/(2rs) 1 R(1808)

Body-center cubic, BCC 3/(16rs
2)

���
3
p
=�2rs� 4 R(70.538)

Face-center cubic, FCC 1/(4rs
2) 1=� ������

2rs

p � 4 R(908)

Fig. 4. Sectional view showing the thermal path through sphere ``C'' in the (a) simple cubic, (b) body-center cubic and (c) face-cen-

ter cubic unit cells.
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consists of a bulk resistance, Rb, and a local resistance,
Ro. The former accounts for the distance separating

the two areas across the cylinder and the latter
accounts for the additional resistance caused by the
presence of the constricted contact areas.

R � Rb � Ro �7�

Thus, for the sphere shown in Fig. 7, the contact angle
only a�ects the separation between the two contacts,
and is thus expected to a�ect only the bulk resistance,

Rb. On the other hand, the local resistance, Ro, is
expected to be a function of the contact radius and
independent of the contact angle, b: As a result, by

subtracting the resistances at two di�erent angle, the
result would be proportional to the di�erences in the
separation distance. This is given below in Eq. (8).�
R�180� ÿ R�b��Ars�1ÿ sin�b�=2� �8�

Therefore, to determine the functional dependence of
R on b, it would be su�cient to obtain R at only a

few angles and then to use Eq. (8) as the basis of a
correlation.
In order for R�b� to be useful in Eq. (6), it must be

computed for a sphere subject to heat ¯ux conditions.
To compute this resistance, the con®guration in Fig. 7
is utilized, and the three-dimensional, steady-state tem-

perature distribution inside a stainless steel-304 sphere
is solved with equal and opposite heat ¯ux conditions,

of 5 � 109 W/m2, imposed at the two contacts. Once
the steady-state temperature is known, the constriction
resistance is computed by dividing the di�erence

between the two resulting contact temperatures by the
imposed heat ¯ow. To obtain the steady-state tempera-
ture, the sphere is initially assumed to be at 08C, and
the transient conduction equation, as given below in

Eq. (9), is solved subject to the boundary conditions
given in Eq. (10).

@T

@t
� a

"
@ 2T

@r 2
� 2

r

@T

@ r
� 1

r 2sin y
@

@y

�
sin y

@T

@y

�

� 1

r 2sin 2y
@ 2T

@f 2

#
�9�

r � rs:�bÿ yc �=2 < y < �b� yc �=2 and

0 < f < fc

ÿ k
@T

@ r
� q�bÿ yc �=2 < y < �b� yc �=2 and

p < f <
ÿ
p� fc

�ÿ k
@T

@r
� ÿq�bÿ yc �=2 > y

or y > �b� yc �=2 or fc < f < p

or
ÿ
p� fc

�
< f < 2pÿ k

@T

@ r
� 0

�10�

In the above equations, yc and fc are the angles sub-
tending the square contact areas, which for compari-

son purposes can be converted into an equivalent
contact radius given below in Eq. (11) [15,16].

rc � �Ac=p�1=2 �11�

Eq. (9) was solved using a ®nite volume formulation,

and in order to increase the temperature resolution
near the contact, the multi-spatial-temporal grid
method [17] was employed. This method provides the

Fig. 5. Schematic showing the angle of the thermal path in the (a) simple cubic, (b) body-center cubic and (c) face-center cubic unit

cells.

Fig. 6. Schematic illustrating the bulk and local constriction

resistance of a cylinder.
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requisite spatial resolution without causing a tremen-
dous increase in the computational time. In brief, this
is accomplished by simultaneously implementing grid

reduction and multiple timesteps. The resulting al-
gebraic expressions were solved using Tri-Diagonal
Matrix Algorithm (TDMA) and Crank±Nicolson
scheme [18].

3. Results and discussion

3.1. Validation and resistance relations

The results were con®rmed to be parameter indepen-
dent. The model had previously been validated in two
previous studies [11,17] and thus only some of the
essential features of the validation will be repeated

here. This consists of testing for physical consistency,
and direct comparison with selected degenerate cases.
The former consisted of verifying for trend consistency,

and the latter consisted of comparing the steady-state
resistance �b � 180� against those obtained by previous

investigators [23,24], including the previous results gen-
erated by Siu and Lee [11] through a di�erent model.
The comparison shown in Fig. 8 indicates excellent

agreement.
The resistance values were obtained for various

sphere sizes, contact-radius ratios and contact angles,

and these are shown in Fig. 9. As expected, the results
collapsed onto one curve and consistent with previous
discussions (Eq. (8)), they correlate to the function of

�sin b=2). This correlation is also plotted on Fig. 9 and
is given below by Eq. (12), where R(180) was corre-
lated in a previous study [11] and repeated here for
completeness. This correlation is valid for the range

between 608 and 1808, and despite the large degree of
correlation, a minor discrepancy is noted near
�sin b=2� � 0:5, or when b � 608: This discrepancy is

due to the close proximity of the two contacts and the
subsequent mutual in¯uence. This is an issue for a
later study.

R�b� � R�180� �
�
0:64 sin 2�b=2� ÿ 0:08 sin�b=2� ÿ 0:56

�
� �krs � �12�

R�180� � 0:54038

krsg
�1� 1:92069�g� ÿ 9:18530

ÿ
g 2
�

� 17:5257
ÿ
g3
�
� �13�

3.2. E�ective thermal conductivity

Combining the above correlation with Eq. (6) allows

for the computation of the e�ective conductivity for
the SC, BCC and FCC unit cells as a function of the
contact radius ratio, g: As shown in Fig. 10, the con-
ductivity for the FCC unit cell is greater than that for

the BCC unit cell which in turn, is greater than that
for the SC unit cell. More importantly, the dimension-

Fig. 8. Validation comparison of the presently computed

steady-state resistance at b � 180 against those obtained by

previous investigators.

Fig. 9. Results showing the variation of the resistance for

varying contact angles and the resulting correlation.

Fig. 7. Schematic of a sphere with two contacts at non-dia-

metrical positions.
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less conductivity varies linearly with the contact-area
ratio, g, and with a correlation coe�cient of 0.99, the

subsequent correlations are given below in Eqs. (14).

SC:
keff

k
� 0:8278g �14a�

BCC:
keff

k
� 1:5336g �14b�

FCC:
keff

k
� 2:4211g �14c�

To assess the exact impact of the contact angle, b, the
above calculations are repeated by substituting R(b� in
Eq. (6) with R(180) from Eq. (13). The resulting values

are then compared against those obtained above and
the subsequent percentage error is computed for var-
ious contact radius ratio, g: The results, shown in

Fig. 11, indicate the error to be larger in calculating
the conductivity for the BCC unit cell than for the
FCC unit cell. This is due to the contact angle in the
BCC cell to be further from 1808 than the contact

angle in the FCC unit cell. In addition, the error
increases almost linearly with increasing contact radius

ratio, and with the present set of parameter, reaches a

maximum value of 18%. Clearly, the e�ect of the con-
tact angle cannot be neglected.
Finally, using the current model, the e�ective con-

ductivity was computed for packed beds with seven
di�erent porosity values ranging from 0.18 to 0.47.
For each packed bed, the porosity value was used to

determine the appropriate unit cell (Table 1), and
through Eq. (1) and Table 2 an appropriate value of
the contact radius ratio was determined. Using this

contact radius ratio and the chosen unit cell, the e�ec-
tive thermal conductivity was determined through Eq.
(14). The results are then compared against previous
experimental results from the powder sintering litera-

ture [19,20], and the heat transfer literature [21], as
well as against the modeling results obtained from the
physics literature [22]. As shown in Fig. 12, the agree-

ment was excellent.

4. Conclusion

An alternative method is herein presented whereby

packed beds are approximated as packed sphere sys-
tems consisting of the SC, BCC or FCC unit cells. The
present method is valid for packed beds of porosity

between 0.5 and 0.2, and where the conductivity of the
sphere is much larger than that of the surrounding
matrix. This method relies on ®rst identifying the
appropriate unit-cell con®guration from the given po-

rosity, and using such con®guration to compute the
e�ective thermal conductivity. This conductivity was
computed through constriction resistance relations,

which were presently computed and correlated. A ®nite
volume scheme in conjunction with a MSTG method
was utilized to compute the necessary relations. These

results were correlated and presented. The results
showed for the ®rst time the necessity of accounting
for the angles between the contacting spheres.

Fig. 11. Results showing the percentage error incurred in cal-

culating the e�ective thermal conductivity of di�erent unit cell

without accounting for the e�ect of the contact angles.

Fig. 12. Results showing excellent agreement between the cur-

rently computed e�ective conductivity and those obtained by

previous investigators.

Fig. 10. Results showing the variation of the dimensionless

conductivity for di�erent unit cell con®gurations and contact

radius ratios.
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Accounting for this contact angle, the e�ective thermal
conductivity was computed for packed beds of di�er-

ent porosities, and excellent agreement was obtained.
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